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Introduction 

The goal of the working group (WG) was to discuss research-based understandings (issues, frameworks, 
methods, findings) of the interplay between the affordances of computational thinking (CT) and 
mathematics. Our discussions were centred on the following questions:  

● What is learning mathematics versus development of CT? 
● What are the common features and differences between the two? 
● How could one describe levels of CT development? 
● Is CT learnable? 
● What are the affordances of CT, as exemplified in specific examples? 
● What are the concepts involved? 
● How can one assess a student’s CT development? 
● What are the so-called 21st century competencies and what are their roles in the development 

of CT? 
What follows is a summary of our discussion, which took place over two days of our working group, as 
well as some a posteriori reflection. We structure the report by focussing on two topics, namely 1) 
Conceptualization of CT, and 2) Assessment of CT development. We provide a framework by inserting 
two task examples that were used to exemplify and prompt ideas and emerging questions. We end the 
report with potential avenues for future research.  
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1.       Conceptualization of CT 

Computational thinking (CT) is a relatively new construct, which is becoming the center of educational 
debates and an increasing number of research publications. If one searches on Google Scholar, more 
than 20000 entries for the period since 2017 are found. Although not all of the entries are relevant, they 
do reflect a growing number of studies of CT in a variety of contexts and educational settings. This said, 
the nature of CT and its place in today’s educational systems is not yet clearly understood. To gain a 
deeper understanding of the complex relationship between mathematics and CT, the working group 
members were eager to discuss the conceptualization of CT. In other words, we asked ourselves: What is 
actually meant by “computational thinking”? Moreover, if we take Wing’s (2006) position paper as a 
starting point, we wondered, how could the still relatively unclear concept of CT reach such a significant 
level of popularity within such a short period of time? After providing a short summary of historical 
milestones, we briefly discuss some different frameworks that have been developed to make sense of 
CT. 

1.1   Historical Viewpoints 

The main arguments given by Wing (2006) in her paper, namely that CT is a ‘universally applicable 
attitude’ and, like reading, writing, and arithmetic, is a ‘fundamental skill for everyone’, have been 
widely cited (see, Barr, 2011; Caspersen & Nowak, 2013; Lye & Koh, 2014; Orr, 2009). But historically, a 
claim of the importance of computer programming for everyone was already expressed several decades 
prior. For instance, at the 1981 Third World Conference on Computer Education in Lausanne, during the 
Keynote Address, Ershov, a Russian computer scientist, called for considering computer programming as 
‘Second literacy’ which, being combined with the traditional (or First) literacy contributes to forming a 
‘new harmony of human mind’ (Ershov, 1981, page 1). 

At about the same time, Papert’s seminal work ‘Mindstorms’ (1980) reflected on the first experiments 
with a computer programming environment called “LOGO”. Papert considered the experiments to be 
still ‘too primitive, too limited by technology’, but nonetheless serving as the model of ‘an object-to-
think-with’, to use to engage in ‘mathematically rich activities which could, in principle, be truly 
engaging for novice and expert, young and old’ (page 182). Already, Papert envisioned the integration of 
‘computational thinking into everyday life’ through ‘the most engaging and shareable kinds of activities’ 
not yet accessible at the time of the fist LOGO experiments (Papert, 1980, page 182). 

Later, in 1996, Papert again used the term ‘computational thinking’ when analyzing an approach used by 
Wilensky and Resnick to build a geometric model of a Rugby game to investigate the question: Where 
should the kick be taken from to maximize the chance of a score?  At the time, Wilensky and Resnick 
were using the StarLogo environment, which was an extension of LOGO. They wrote a computer 
program that modelled several rugby players standing, each of them kicking thousands of balls in 
random directions. The experiment helps to determine which player would be most likely to score the 
most goals, whereby representing the best kicking point (Wilensky, 1996). This example illustrates how 
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geometric thinking can use computational thinking ‘to forge ideas that are at least as "explicative" as the 
Euclid-like constructions (and hopefully more so) but more accessible and more powerful’ (Papert, 
1996). 

This short excurse in the history points out some important ideas brought forth by visionaries who, in 
recognizing the value of CT, proposed novel pedagogical paradigms more than two decades before Wing 
(2006), whether it involves CT as a new form of literacy (through programming) (Ershov, 1981), or CT as 
providing learners with the power of computational modelling (Papert, 1981, 1996; Wilensky, 1996). It 
also highlights the foundations of some essential elements of today’s theoretical debates about the 
nature of CT and how it could afford novel ways of teaching and learning, both in general, and in relation 
to mathematics in particular. Returning to Wing’s (2006) quest for CT as a fundamental skill for 
everyone, it is interesting to note that she too emphasized how computational methods and models 
could empower us to ‘solve problems and design systems that no one of us would be capable of tackling 
alone’ (p. 33). In fact, the author suggests that the question of what is computable is still open for 
debate, thus reflecting the limitations of our partial knowledge. To gain more insight into the knowledge 
that does exist surrounding CT, we decided to start reviewing existing frameworks. 

1.2   Some Existing Frameworks Concerning CT 

Our inquiry was guiding by these questions: How can one study CT? What perspective should one 
adopt? What is the relationship between CT and mathematics, and particularly mathematical thinking? 
In the literature, we can find different approaches to conceptualize and to study CT. We focused on two 
frameworks in particular: i) one developed by Brennan and Resnick (2012) and another linked to Lyn’s 
plenary talk at our Symposium, which focused on ii) the connections between CT and the STEM 
disciplines. 

1.2.1 The Three-Dimensional CT Framework of Brennan and Resnick (2012) 

Based on their work with Scratch programming blocks, Brennan and Resnick (2012) define three 
dimensions of computational thinking: computational concepts, computational practices and 
computational perspectives. 

As key computational concepts, the authors give the following list: sequences, loops, parallelism, 
events, conditionals, operators, and data. Sequences mean expressing a particular activity or task in 
terms of a ‘series of individual steps or instructions that can be executed by the computer’ (Brennan and 
Resnick, 2012, p. 3). In some ways, the structure of a sequence is similar to that of a recipe which 
prescribes steps to be produced. Loops provide a ‘mechanism for running the same sequence multiple 
times’. Events are defined as ‘one thing causing another thing to happen’, thus allowing for interactions 
of the user with the program. Parallelism describes ‘sequences of instructions happening at the same 
time’; this is a feature that can be found in many modern computer languages since it provides the 
possibility of several processes running at the same time. Operators offer possibilities for ‘mathematical, 
logical, and string expressions, enabling the programmer to perform numeric and string manipulations’. 
This includes a wide range of mathematical operations (including addition, subtraction, multiplication, 
division), functions (like sine and exponents) and operations with strings (including concatenation and 
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length of strings). Finally, working with data ‘involves storing, retrieving, and updating values’ (Brennan 
and Resnick, 2012, p. 6). 

When defining components of computational practices, Brennan and Resnick (2012) used data from 
interviews with children about the strategies they adopted while developing interactive media. From the 
variety of such strategies, four main categories were identified: being incremental and iterative, testing 
and debugging, reusing and remixing, and abstracting and modularizing. 

First, when considering the process of designing interactive media, Brennan and Resnick (2012) noticed 
its adaptive nature: there was always the possibility that the initial plan would ‘change in response to 
approaching a solution in small steps’ (p. 7). Indeed, the process is incremental and iterative, rather than 
being linear, leading from conception to solution in a straightforward manner. Second, developing 
strategies for testing and debugging is also crucial for the designers of interactive media, as it enables 
them to solve problems they might encounter ‘through trial and error, transfer from other activities, or 
support from knowledgeable others’ (p. 7).  Third, a design of a complex interactive media is rarely 
possible without building on others’ work by reusing and remixing. This is ‘amplified by network 
technologies that provide access to a wide range of other people’s work, like the one generated by the 
Scratch online community’ (p. 8). Finally, abstraction and modularization is the practice of putting 
together collections of smaller parts, which helps designers build something large that can be employed 
at multiple levels, ‘from the initial work of conceptualizing the problem to translating the concept into 
individual sprites and stacks of code’ (p. 9). 

The third dimension of CT, one of gaining computational perspectives, describes the different roles 
people can play when working with interactive media, roles that go beyond ‘pointing, clicking, browsing, 
and chatting’. Although this role of being consumers is important for learners, it is not sufficient in terms 
of the development of CT. According to Brennan and Resnick’s (2012) framework, working with design 
tasks encourages more active roles, which emphasize expression, connection and questioning. 

The computation itself becomes a medium for ‘self-expression’ of someone’s ideas, while giving them a 
power to create. At the same time, a design activity seems to reinforce social aspects of CT, leading 
people to become more connected by enriching their opportunity of interaction with others (face-to-
face or through online community). Finally, computational perspective of questioning comes from 
indicators of young people feeling ‘empowered to ask questions about and with technology' hence 
developing their abilities to ‘negotiate the realities of the technological world’, rather than feeling some 
kind of disconnect from the surrounding increasingly technological environment (Brennan and Resnick, 
2012, p. 11).  

1.2.2 CT Through the lens of a more Integrated STEM Education (English, 2017) 

While Brennan and Resnick base their definition of CT on computer programming (Scratch) tasks (or, 
more precisely, the process of designing interactive media), English (2017) looks at CT through the lens 
of STEM education, another growing field in teaching and learning theories and practices. With the aim 
of challenging an isolated technology curriculum component (the “T” in STEM), English grounds her 
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arguments on recent studies by Gadanidis et al. (2016), Schneider et al. (2014), and Weintrop et al. 
(2016), all of whom discuss CT skills in a broader and more integrated manner. 

For instance, Weintrop et al.’s (2016) model of computational practices reflects and represents how 
many domains in mathematics and science are becoming ‘computational endeavours’; they are being 
enhanced by CT but are also reciprocally enhancing CT through practices involving data, modelling and 
simulation, computational problem solving, and systems thinking. In a similar vein, Schneider et al. 
(2014) identify problem solving, modelling, analysing and interpreting data, and statistics and probability 
as shared features of mathematical and computational thinking.   

While arguing for a more equitable focus on each of the STEM disciplines, English (2017) sees value in 
the approach to CT adopted by Gadanidis et al. (2016). This approach focuses on investigating, depicting 
and learning ‘from cases of “what might be” (or “what ought to be”), to disrupt common conceptions of 
what CT and mathematics are accessible to young children, how they might engage with it, and how CT 
affordances may affect mathematics teaching and learning’. In the case of mathematics, this approach 
can open the door to higher-level mathematics even to a very young learner. Extending these 
sentiments to the broader scope of STEM-education, English (2017) suggests that equal access to a high-
quality STEM education that integrates CT is a ‘key issue for future research, not only with respect to 
socioeconomic, gender, and ethnicity factors, but also in terms of capitalizing on and extending the 
capabilities of all learners’. 

1.3 Debates About the Nature and Role of CT and its Possible Relationship with Mathematics: Denning 
(2017), diSessa (2018), Pólya (1945), Wing (2008). 

At some moment in our discussions arose, unsurprisingly, a general debate on the relationship between 
computational thinking, computer science, mathematical thinking, mathematics, and so on. This 
naturally led to the drawing and dissection of several diagrams like the ones shown in Figure 1 below.   
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Figure 1. Examples of Visualizing the Relationship between CT and Mathematics 

  
Wing (2008) proposes a very specific way of perceiving the relationship between CT and other kinds of 
thinking. She suggests CT to be a complex venture that shares with mathematical thinking an approach 
to dealing with solving problems, with engineering thinking strategies for designing and evaluating large, 
complex systems that operate within the constraints of the real world, and with scientific thinking a 
common understanding of computability, intelligence, the mind and human behaviour. While analyzing 
computing from an operational point of view, Wing (2008) relates it to answering the question: ‘How 
would I get a computer to solve this problem?’ By computer, Wing (2008) means a machine, a human, 
the combination of a machine and a human, or the combination (e.g. a network) of such computers. 
From this perspective, the author points at defining abstractions as the ‘mental’ tools of computing, ‘the 
nuts and bolts’ in CT. This includes working with multiple layers of abstraction and understanding the 
relationships among the different layers. Computing is thus defined as ‘the automation of our 
abstractions’ (p. 3718). 
  
diSessa (2018) critiques this view as being too centred on computers and computer science (i.e., 
“thinking like a computer scientist”). In place of such a view, he offers a bigger picture of CT by shifting 
the focus to “computational literacy”: a ‘new, deep, and profoundly influential’ kind of literacy that ‘will 
impact all STEM disciplines at their very core’. When reviewing Wing’s reference to CT as a problem-
solving process, diSessa also points out many similarities between her approach and the significant work 
done by Pólya back in 1945 within the specific context of mathematics and mathematics education (his 
stages of decomposition and re-composition, drawing a picture, generalizing, and planning). 

Among the different principles diSessa (2018) advocates, one refers to the use of ‘epistemologically rich’ 
computer systems with ‘yet unrealized consequences for the mathematics we can experience and might 
teach’. Hence, a deeper understanding of ‘what calculation or computation can accomplish, their 
limitations, their built-in assumptions about the world, signs of failure, and what might be done to 
contextualize algorithms better, or even change them to suit local needs’ could be a promising starting 
point of real integration of computations in work situations (diSessa, 2018, p. 24). In comparison to 
Wing, diSessa seems to be promoting a perspective that places a discipline like mathematics at its center 
and aims to figure out how to make CT work within and for that discipline. 

2.       PAUSE 1: Thinking with an Example 

As the working group discussion progressed, the members felt the urge to consider a specific task in 
hopes of grounding their ideas within a concrete situation, while avoiding over-generalized statements. 
Chantal proposed the following example of a CT-based mathematics task where the goal is to design, 
program, and use an interactive interface to investigate a self-selected or self-stated conjecture about 
prime numbers by building on a program that checks whether a positive integer is prime. 

2.1 Example of a Project Integrating CT into an Undergraduate Mathematics Course 
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This example is an assigned task in the first-year Mathematics Integrated with Computers and 
Application (MICA) I course at Brock University (Buteau, Muller, & Ralph, 2015). It is presented at week 3 
of the course, when students have learned about designing an interface (by drag and drop), 
writing/reading from textboxes, variables, loops, and conditional structures. The aim of this first 
assignment is for students to experience the use of programming (vb.net) in a natural context (i.e., 
similarly to what a mathematician might do; Broley, Buteau, & Muller, 2017): selecting an open 
mathematics conjecture or a question of interest (to themselves), and then using programming to 
investigate whether it may hold true or not. In particular, students are encouraged to use the potential 
of the computer (e.g., “Students: checking only up to 10,000 might be rather little for the computer!”). 
They are also asked to summarize their investigation in a written report, including a sample of data 
collected and their conclusions. 

The topic of prime numbers for the first-year undergraduate mathematics students and pre-service 
teachers provides a relatively easy mathematics topic to tackle (low floor); meanwhile, it may lead to 
many questions still unknown to mathematicians (high ceiling). Programming-wise, the assignment 
prompts the students to remix a given program and apply all of the concepts learned thus far. 

Below (Figure 2) is a screenshot of one student’s interactive interface (Buteau et al., 2016). This student 
decided to investigate the Opperman’s conjecture, which states for any integer n > 1, there is at least 
one prime number between n(n−1) and n2, and at least another prime number between n2 and n(n + 1): 

 

Figure 2. Screenshot of a student’s project (programmed in vb.net) who aimed at investigating the 

Opperman’s conjecture. 

The student indicated in her written report: 

I wanted to select a conjecture that genuinely interested me, so I selected this one. I thought it 

was interesting how such a simple process could potentially work for every single integer 

greater than one, and I wanted to see the legitimacy of the conjecture for myself by using this 

opportunity of writing a program…[w]hile I was inputting various integers and confirming them, 

I became more and more surprised that this idea is still a conjecture and not yet a theorem. 

Even though there is still no proof of it up to this day, my sample data has proven to me that 
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Oppermann’s conjecture is a great idea, seeing as how I, personally, believe it works. (Buteau et 

al., 2016, pp.150-1) 

2.2. Reflecting on This Example Within Our Working Group 

Here are the points or questions brought by the WG participants while reflecting on the example: 

· Mathematical contexts can be used to bring CT into teaching and learning thus providing fertile 
opportunities to conduct meaningful investigations; this can deepen students’ understanding of 
mathematics and the role of CT and affordances of computational tools.   

· There are several levels of engagement into programming identifiable with this example: 
modifying, analysing, creating – teacher chooses what to emphasize. 

· Computational paradigm can be used while investigating different topics using CT (statistics; 
algebra); for example, when drawing a square using CT approach provides with different 
understanding and variety of affordances, 

· Referring to the Instrumental Approach (Rabardel, 1995) – see also the book Tools and 
Mathematics (Monaghan, Trouche, and Borwein, 2016) – when is the tool (programming) 
becoming an instrument? What form would it take in such a task (or would it need more of such 
tasks maybe)? 

· How can one assess this type of student activity, and that would be an assessment of what 
exactly: mathematics, CT, CT and mathematics? CT for doing mathematics? Should one use 
qualitative or quantitative assessment or both? Chantal pointed to a co-authored paper with Eric 
that examined the assessment of this kind of tasks: (Buteau & Muller, 2016). 

· Are there different CT developmental levels? (see section 3.1) 
· What is the role of 21st century competences (problem-solving, communication, critical thinking, 

collaboration, among the others) and soft-skills, and how can these competences and soft-skills 
be developed in tasks similar to the example? 

· CT could be used as tool to help to solve problems and may facilitate certain concepts; in this 
example, it assisted the student by computing (large) examples of the mathematical conjecture 
for whatever integer value she inputted. 

· Consider collaborative problem solving 
· What are the student skills (mathematical; computational; and mathematical-computational 

skills) involved in such a task?  
· What are key aspects in such tasks: producing artifacts, communicating, understanding, …? 
· Is CT learnable? Is it teachable?  What about self-directed learning? 
· A kind of manipulatives – thinking about what students are doing in the activity, i.e., the math 

that comes out 
  

3.       Assessment of CT Development 

On the second day, assessment of CT development was at the core of our discussions. We asked: How 
can we assess CT development? What can we use? Four kinds of methodological perspectives were 
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considered while discussing these two questions, each of which can be classified as: (a) developmental 
or task and process oriented; and (b) mathematics-specific or general.  The following table summarizes 
the frameworks for assessment discussed by the WG participants. These frameworks are further 
elaborated below. 

 

 

 

 

 

 

 

 

 

Table 1. Frameworks for Assessment of CT 

  Mathematical General 

Developmental Broley, Caron, & St-Aubin’s 
(2017) praxeology-based 5 
levels-framework 
  
Buteau & Muller (2016) – 
adaptation of Brennan and 
Resnick’s framework (2012) 
to computational practices 
in mathematics 
  

Brennan and Resnik’s (2012) three 
approaches: portfolios, interviews, 
scenarios 
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Task & process -
oriented 

Buteau, C., Muller, E., 
Marshall, N., Sacristán, A. I., 
& Mgombelo, J. (2016)’s 
Instrumental approach 
(Rabardel) 

Bebras competition tasks, Djambong et al, 
2018 – 4 components of CT algorithmic, 
task decomposition, pattern recognition, 
abstraction (Dolgopolovas, Jevsikova, 
Savulioniemé & Dagiené, 2015) 
  
OCDE PIAAC (2009). Problem-solving in 
technology-rich environments: problem 
situation(task), technology, cognitive 
dimension – levels of complexity 
  
Zhong et al. (2016) 3-dimensional 
framework: directionality (forward or 
reverse), openness (three types of 
openness), and process (self-report). 
  
Wilkerson, Shareff, Laina, & Gravel (2017) 
epistemic games (Collins & Ferguson, 
1993) learners play when constructing 
models using the SiMSAM tool 

  

 

 

3.1 A six-levels model based on the praxeologies of mathematicians and their students (Broley et al., 
2017). 

Broley et al. (2017) studied the praxeologies of mathematicians in their research and the praxeologies 
they propose to their undergraduate mathematics students, in relation to computer programming. To 
compare the place of programming within the two collections of praxeologies, they identified the 
following six levels of engagement in the activity. A student or mathematician could: 

·         L0: Strictly observe the results of a computer program (under the direction of someone 
else); 

·         L1: Manipulate the interface of an existing program (in an extracurricular fashion); 
·         L2: Observe (and analyze) the code of a program; 
·         L3: Modify existing code to accomplish something new; 
·         L4: Construct the code of a program, with some elements (e.g., the algorithm) provided; or 
·         L5: Create a program, including algorithm development, coding, and verification/ 

validation. 
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In relation to the highest level of engagement, some mathematicians interviewed by Broley et al. (2017) 
suggested that programming was the “most mathematical” when it involved complex, deep, or original 
thinking, as in the search for an efficient algorithm. Echoing section 1.3, some mathematicians also 
compared programming to the process of solving a problem or constructing a proof. 

In the example described in section 2.1, the professor chose to invite his/her students to first create 
their own programs (L5) and then to modify them to accomplish something new (L3). As such, we could 
predict that the students are developing some programming techniques that may integrate into their 
collection of mathematical praxeologies. In comparison, had the students only observed the results of a 
program developed by their professor (L0), played with such a program at the interface level (L1), 
and/or analyzed the code of the program (L3), we could predict that their awareness of and skill in 
programming (during that particular project) may have been developed to a lesser degree, if at all. 

Of course, such lower levels of programming engagement may be more appropriate when the aim of the 
teacher is something other than encouraging the development of students’ programming techniques 
(e.g., challenging their students’ intuition, working on their exploration and interpretation of visual 
output, or exemplifying how (a particular piece of) code works). In fact, it is not difficult to imagine how 
teachers could use any of the levels to develop aspects of computational thinking in their students, 
should we adopt the broad definitions discussed throughout this report. 

 

 

 

3.2 Three approaches to CT assessment (Brennan & Resnick, 2012) 

First approach, project portfolio analysis: 

Each member of the Scratch online community has a profile page that displays their creations, as well as 
other dimensions of participation, such as projects they have favorited and Scratchers they follow 

According to the authors (page 15), this approach (conducting content analysis as a means of assessing 
computational thinking) has several limitations, among them: 

● entirely product-oriented, and reveals nothing about the process of developing projects, 
● no information about the particular computational thinking practices that might have been 

employed 
Second approach: Artifact-Based Interviews: 

Here are examples of questions used in the interviews with members of the Scratch community: 

●  (about Scratch, in general) How did you find out about Scratch? What is Scratch? Where do you 
use Scratch? What do you do with it? 

●  (about the project) How did you get the idea for your project? How did you get started making 
your project? What happened when you got stuck?  
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●  (about the online community) What do you do in the online community? How do you find 
interesting people and interesting projects? How do you interact with other Scratchers? 

●  (looking forward) What do you dis/like about Scratch? What would you keep, add, change? 
What are other(non) tech-related things you like to do? 

Some limitations: time consuming, the discussion was limited by what the Scratcher was able to 
remember and did not typically explore practices in real time. 

Third approach: Design scenarios 

Three sets of Scratch projects with increasing complexity. Within each set, there were two projects; the 
projects engaged the same concepts and practices while appealing to different interests. In a series of 
three interviews, students were presented with the design scenarios. The students were then asked to 
select one of the projects from each set, and (1) explain what the selected project does, (2) describe 
how it could be extended, (3) fix a bug, and (4) remix the project by adding a feature. 

Limitations: design scenarios are time consuming; the nature of the questions and the use of externally-
selected projects may not connect to personal interests and the learner’s sense of intrinsic motivation. 

Six suggestions for assessment: 

● Supporting further learning 
● Incorporating artifacts 
● Illuminating processes 
● Checking in at multiple waypoints 
● Valuing multiple ways of knowing 
● Including multiple viewpoints (pp. 23-24) 

While working within mathematical (developmental) context, Buteau and Muller (2016) have extended 
Brennan and Resnick’s (2012) computational thinking assessment framework into the domain of 
mathematical inquiry by suggesting a selection of both formative and summative multifaceted 
assessments to measure student learning through tests in mathematics and programming, prescribed 
and original programming-based projects and students’ written reports. The authors have also adapted 
Brennan and Resnick (2012)’s computational practices to include practices such as ‘modelling abstract 
mathematical concepts into concrete code, designing and coding a mathematical simulation, and 
engaging systematically in a computer-assisted mathematical inquiry’ (Buteau & Muller, 2016) with 
reference to Weintrop’s (2016) four categories for CT in mathematics and science: data practices; 
modelling and simulation practices; computational problem solving practices; and systems thinking 
practices. 

3.3 Bebras CT competition tasks (Dolgopolovas et al, 2015) 

Bebras tasks (Dolgopolovas, Jevsikova, Savulioniemé & Dagiené, 2015) target one or more properties of 
CT (cognitive skills): Abstraction (AB), Decomposition (DE), Algorithmic thinking (AL) and pattern 
recognition (PR). Based on the sets of the tasks used in Bebras competitions, Djambong et al. (2018) 
have built a set of tasks and tried them with Grade 6 and Grade 9 students enrolled in a Broad-Based 
Technology course. As a result of the questions containing multiple CT properties the authors were 
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unable to show that the test was able to measure a change in CT development. It was also found that 
the Bebras questions were unable to provide with exact measurement of each computational thinking 
cognitive skill. 

3.4 Rabardel’s Instrumental approach (4 integration levels – tasks – appropriation of the tool) 

The instrumental approach (Rabardel 1995, 2002) describes how material or symbolic artefacts can be 
transformed into instruments through schemes of usage and action appropriated through instrumental 
genesis (Artigue, 2002). A concept of instrumental integration (Goos and Soury-Lavergne, 2010, cited in 
Buteau et al, 2016), in its turn, allows for defining four stages of growing technology use in the 
classroom (Assude, 2007): (a) instrumental initiation (stage 1)—students engage only in learning how to 
use the technology; (b) instrumental exploration (stage 2)—mathematics problems motivate students to 
further learn to use the technology; (c) instrumental reinforcement (stage 3)— students solve 
mathematics problems with the technology, but must extend their technology skills; and (d) 
instrumental symbiosis (stage 4)—students’ fluency with technology scaffolds the mathematical task 
resulting in an improvement of both the students’ technology skills and their mathematical 
understanding. E.g. Buteau et al. (2016) have used this approach examining a university student 
experience in a sequel of programming-based mathematics courses. 

3.5 OECD-PIAAC Problem solving in Technology-rich environments Framework 

The Organisation for Economic Co-operation and Development (OECD) has developed a framework for 
assessing problem solving in technology-rich environments for its PIAAC (Programme for the 
International Assessment of Adult Competencies) 2012 international study (for adults 16-65-year-old):  
four levels of competence – 0 (no experience with technology) to 3 (fluency in problem-solving of 
complex tasks). 

Problem solving in technology-rich environments involves using digital technology, communication tools 
and networks to acquire and evaluate information, communicate with others and perform practical 
tasks. The first PIAAC problem solving survey focuses on the abilities to solve problems for personal, 
work and civic purposes by setting up appropriate goals and plans, accessing and making use of 
information through computers and computer networks (PIAAC, 2009, p. 9). Problem solving in 
technology-rich environments is formed by three core dimensions: 

i. Cognitive dimensions: Goal setting and progress monitoring; Planning, self-organizing; Acquiring 
and evaluating information; Making use of information 

ii. Technology dimensions: Hardware devices, software applications, commands and functions, 
representations 

iii. Task dimensions: Task purposes (contexts); Intrinsic complexity; Explicitness of problem 
statement 
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Figure 3. Three core dimensions of problem-solving in technology-rich environments (PIAAC, 2009, p.48) 

  

3.6 Epistemic games in computational model-based inquiry activities (Wilkerson et al, 2018) 

Wilkerson et al. (2018) used computational modelling activities based on VanLehn et al.’s (2013) four 
types of tasks in a context of science education: model exploration; notational model construction; 
analytic model construction, and model-based inquiry. In their study, the authors have engaged students 
in constructing models of a target system for which few details were explicitly provided to the student. 
Students were expected to conduct research by eventually leveraging their intuitive understandings of a 
target system in order to decide what should be included in a model, and what should be the model’s 
final form (Wilkerson et al, 2018). 

With reference to Collins and Ferguson’s (1993) theory of epistemic forms and games, Wilkerson et al 
(2018) considered computational modeling and the role of representational tools and structures in 
supporting scientific inquiry under two assumptions: (1) a desired result of any epistemic game is the 
completion of a target epistemic form that satisfies the inquiry and (2) each epistemic game produces a 
characteristic form; the same form may be produced by more than one game (Collins and Ferguson 
1993, cited by Wilkerson et al, 2018). 

  

3.7 Three-dimensional model by Zhong et al. (2016) 

Zhong et al (2016) focused on three dimensions in the design of assessment tasks: directionality 
(forward/reverse), openness (three types of openness), and process (self-report). Based on these 
dimensions, they design six types of tasks to assess CT:  (a) The closed forward task, which is an 
unfinished task with a defined outcome and a defined process solely; (b) The semi-open forward task, 
which is an unfinished task with a defined outcome solely and an undefined or open process; (c) The 
closed reverse task, which is a troubleshooting task with a defined outcome and a defined process 
solely; (d) The semi-open reverse task, which is a troubleshooting task with a defined outcome solely 
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and an undefined or open process; (e) The open task with a creative design report, which is a creative 
task with an open outcome and open process; and  (f) The open task without a creative design report, 
which is a creative task with an open outcome and open process. 

 

4.        PAUSE 2: Thinking with an Example 

Once more, the working group members sought the context of a specific example within which they 
could more concretely position their reflections. This example, provided by Natalia, was based on a 
poster presented at the symposium (Vasilyeva, 2018a). 

4.1. Example of a Task in an Undergraduate Mathematics Course on Mathematical Thinking 

Natalia, explains: In my study I analyzed a set of MAST 217 (Introduction to Mathematical Thinking) 
students’ solutions of a problem involving investigation. The problem required finding a formula 
representing the outcome of a potentially infinite haggling process and justifying it (or, from the point of 
view of the student – making sure the formula is correct). Since the formula was not given (it had to be 
found), solving the problem required engaging in a sort of small-scale “mathematical investigation”. 

Here is the text of the problem, as it was posted on the web page of the course: 

John is trying to sell Mark a bike for a dollars.  
Mark does not agree on the price and offers b dollars (0< b < a). 
John does not agree on this price but comes down to (a + b)/2 = 1/2 a + 1/2 b. 
Mark responds by offering (b + (a + b)/2)/2 = 1/4 a + 3/4 b. 
They continue haggling this way, each time taking the average of the previous two amounts. 
On what amount will they converge? Express the amount in terms of a and b.  
 
Explain your reasoning and justify your response. 
Have you tried to verify your answer? If yes, how? 
  

This assignment was given to students near the end of the course, in the 10th week of classes (the 
course lasts 13 weeks). By this time, related topics such as geometric sequences and series, the notion 
of the limit of a sequence, the theorem that increasing (decreasing) and bounded above (below) 
sequences are convergent and examples of convergent sequences related to computational algorithms 
were covered. Solving this non-routine problem required some mathematical investigation. It could be 
solved empirically by observing the numerical results and making a conjecture about the limit of the 
sequence. Students could try to verify the conjecture by drawing a diagram, by observing a link between 
the sequences involved in the amounts and geometric series or by using other means. Even though the 
haggling problem did not demand the formal construction of a proof, we expected students to attempt 
to convince themselves and others. 

4.2 Natalia’s Comment and Reflection on the Example 
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Natalia explains: In my master’s thesis (Vasilyeva, 2018b), I analyzed students’ solutions of the haggling 
problem. At least 26 students (out of 32) systematically explored examples to solve the haggling 
problem. I distinguished two main approaches in attacking the haggling problem: computational (7 
solutions) and analytical (19 solutions). 

Computational approach 
By “computational approach” I mean arithmetical exploration of many concrete amounts or coefficients 
(usually using a computer software). Thus, students carried out numerical experiments to show that a 
sequence of amounts converges. For example, one of the students designed a code in Python and used 
several pairs of values for a and b in his calculations. Other students calculated coefficients directly. 
Observation of numerical results did not always lead to the correct answer. Only three out of 7 students 

concluded that the final amount is 1
3
	𝑎	 + 2

3
	𝑏 and their justification can be accepted as a generic 

example proof (Yopp at al., 2015). 

Analytical approach 
“Analytical approach” is assumed in my study to refer to an algebraical exploration of the sequence of 
coefficients, searching for patterns, and then using other heuristics, such as analogy, deduction, 
structure recognition, or algebraic manipulations. 

A majority of students (19) tried to solve the haggling problem by using this approach: they looked for a 
formula to represent a sequence of prices. Most of them thought about finding the limit of this 
sequence. Moreover, some of them tried to show that the sequence is bounded and decreasing. 
However, only 8 students arrived to the correct answer and provided some deductive arguments to 
make their solutions count as mathematical proofs (with gaps and minor mistakes). It is worth noting 
that 7 students among those 8 checked their conjecture by using concrete examples. In other words, 
they combined analytical and computational approaches. 

The findings from my study suggest that it is possible to integrate computational thinking in 
mathematics education. For example, a computational simulation of the haggling problem can be seen 
as a first step in making and testing conjectures. 

 

5. Potential Avenues for Future Research – Proposal by Laura, Amy, and Joyce 

As the meeting was drawing to an end, we decided to break into small groups to brainstorm potential 
avenues for future research. Each small group was asked to come up with a potential research project, 
including a question, a theoretical framework, and a methodology. Then we shared and discussed our 
ideas within the whole group. As a way to conclude our report, we next summarize the proposal from 
the small group involving Laura, Amy, and Joyce. 

It is true that “computational thinking” is a new buzzword; but, as mentioned at the beginning of this 
report, the concepts related to the word have been discussed for decades. This small group wondered 
about the need for a comprehensive literature review that goes beyond the most commonly cited and 
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most recent frameworks: a sort of deep dive in the history of mathematics education literature to 
explore the different ways in which computational thinking has and could be conceptualized. 

This led us to formulate the research question: How could we conceptualize computational thinking in 
mathematics education (research)? The word “could” is meant to highlight the perhaps necessary 
existence of a multiplicity of perspectives that may be useful to varying degrees depending on the goals 
of its user; for example, depending on the specific aims of a researcher. The theoretical framework to 
support answering such a question could involve a selection of different frameworks discovered during 
the literature review mentioned above. During our small-group discussion, we noticed that each of us 
defines “computational thinking” in a slightly different way, whether as part of a person’s praxeologies 
(Laura), as an artefact or tool (Joyce), or as one of many modalities of learning (Amy). To answer the 
research question, we posed and ultimately show what different conceptualizations of computational 
thinking may (or may not) bring to research. Further, we envisioned a study where we analyze the same 
mathematical task from our three differing perspectives. 

When sharing our idea with the WG, it was conjectured that different perspectives on “computational 
thinking” may even correspond to different kinds of tasks. Hence, the methodology we proposed could 
include not only an analysis of an existing mathematical task, but also proposed modifications to such a 
task based on each perspective. It was also noted that such an exploration of the existence and 
usefulness of different conceptualizations may release the tension we face when we stubbornly 
continue the struggle for one clear and comprehensive definition for “computational thinking”, 
especially in relation to “mathematics” or “mathematical thinking”. It reminded us that the models we 
use in research can simply be machines for supporting or producing certain understandings, rather than 
providing accurate, complete representations of a reality that exists outside of us. 
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