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ABSTRACT 
 
In this working group, we explored the integration of computational thinking (CT) in mathematics 
teaching and learning from preschool to undergraduate and teacher education settings. We examine 
CT as an enigmatic term, with its’ roots grounded in the work of Seymour Papert (1993, 1996) and 
focused on what it might look like and entail at various levels of education. In doing so, we 
foregrounded CT as a “value-driven” habit of human beings and examined a possible framework, 
within which CT is situated. We find resonance in the interdisciplinary nature of CT and suggest that 
for effective integration, there should be a focus on curriculum reconceptualization. In order to 
pursue this suggestion, we provide a small set of examples, which we believe promote CT in 
mathematics teaching and learning to show that, despite the use of CT as synonymous with 
computer programming, CT is more than programming and coding and is embedded in mathematics 
teaching and learning across all levels.  
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INTRODUCTION 
 
We start from the premise that Computational Thinking (CT), like other patterns and categorised 
forms of thinking (Mathematical, Probabilistic, Design, Systems, Legal, Historical, Scenario, 
Evolutionary, Ethical, Critical etc.) is:  a) thinking about some types of phenomena (objects, practices, 
principles) in a particular way that is related to, but still distinguishable, from other forms of thinking 
about the same or similar phenomena; b)  situated within, and results from, the interactions of 
particular collections/collectives of individuals-with-tools-and-stories( i.e., interest-driven 
communities, involved in computational practices); and c) resulting in the emergence of a variety of 
computational cultures over time and geographical space. At present, there is a lack of consensus on 
definitions of computational thinking, and thus it remains a polysemous term that is often used 
interchangeably with Computer Science or Structured Computer Programming, in contexts in and 
out of education.  
 

We understand this polysemy to be a consequence of the existence, contributions, and 
interests of multiple diverse computational communities in which the term has meaning and 
significance.  Consequently, the attendant ambiguity for teachers and researchers surrounding the 
usage and definition of the term exists in educational settings, ranging from preschool through 
undergraduate and teacher education. Tatar et al. (2017), for example, note that in the North 
American context, there have been at least three foci to computational thinking at the school level: a 
direct approach through structured programming (e.g., Scratch, Python), abstract cognition (e.g. 
principles and concepts from Computer Science), and replicating actions that embody computational 
thinking concepts (e.g. robotics, unplugged activities). Similarly, in Mathematics Education, Harouni’s 
(2015) genealogical analysis of why Americans teach the mathematics they do posits that at least 
three different institutional settings - the Shop floor, the Grammar school and Reckoning schools and 
their associated cultures and values, as bequeathing, to varying degrees, their genetic legacies to 
modern mathematics education. Harouni concludes that the curriculum and pedagogy of today’s 
American mathematics education is most aligned with a hybrid of Reckoning and Grammar school 
curriculum and pedagogy. Understanding the complex genealogy of the concepts we work with, the 
socio-political contexts in which they operate and their historical alignments with power and 
privilege is a critical requirement in appreciating and addressing the challenge of curriculum 
integration involving CT.  

 
Tedre and Denning (2016) provide a brief and necessary history of the development, 

diversification, and mythologisation of the concept of CT over more than half a century, beginning in 
the 1950’s. They demonstrate that, “the key concepts, narratives, and major arguments of CT were 
worked out during many years of debate from the 1950s to the 1990s [with]...definitions var[ying] 
from narrow to broad” (p.127). Recognition and awareness of the breadth and depth of this history 
is important for work in education to reduce the risk of, “repeating already refuted claims, past 
mistakes and already solved problems, or losing some of the richest and most ambitious ideas in CT” 
(p.120). They note that the various computational sciences (eg. bioinformatics, computational fluid 
dynamics etc.) in existence today each have their preferred and dominant computational models, 
and stress that CT is always in reference to a specific and implied model. To summarize, different 
computational cultures, their dominant computational models, metaphors and practices have 
contributed and contribute to the plurality of approaches to defining CT in the field today.         
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Our working group engaged in several discussions over the two-day period, as we explored 

the integration of computational thinking (CT) in mathematics teaching and learning from preschool 
to undergraduate and teacher education settings. We first present our discussion regarding a 
working definition of CT, and then its relationship to mathematical thinking. In the next section, we 
explore CT as a value-driven process. We present several examples we considered as we worked 
through these discussions. We end with a consideration of the need for curriculum 
reconceptualization in order to better pursue CT as a goal in an integrated framework and present 
the idea of proto-computational thinking (PCT) as a slight, but perhaps meaningful, shift in the 
conversation.    

 
DISCUSSION: WHAT IS COMPUTATIONAL THINKING? 
 

A significant part of our discussion on both days involved a consideration of the multiplicity 
of definitions of CT, of which we were aware at the time through works such as Denning (2016); 
Weintrop et al (2016) and Wing (2006). This discussion provided a common framework for 
productive discussion and engagement with the idea of curriculum integration. We note, from 
previous experiences in symposia and working groups that this is often a necessary first step, due to 
the diversity of experiences and conceptions of CT (Buteau et al. 2016; Namukasa et al., 2015).  

 
In education, we noted that Seymour Papert (1993, 1996) is credited with introducing the CT 

term, and Jeanette Wing (2006) is credited with popularizing it as a concept. Shute et al. (2017) 
however, after  an extensive literature review suggests a definition of CT as “the conceptual 
foundation required to solve problems effectively and efficiently (i.e. algorithmically, with or without 
the assistance of computers) with solutions that are reusable in different contexts” (p.142, italics 
added), which is an elaboration of the Cuny-Snyder-Wing definition of CT as “the thought processes 
involved in formulating problems and their solutions so that the solutions are represented in a form 
that can be effectively carried out by an information-processing agent” (2010). The idea of 
reusability in different contexts as they related to abstraction and automation were themes that we 
returned to and are discussed in the section below on CT as a value-driven human. Our discussion 
also touched on the fact that in CT understanding is a goal and that for CT one is actively 
understanding and thinking about the situation and goal. 

 
Simultaneously, we considered and tried to represent the relationship between CT and 

Mathematical Thinking (MT), using Venn Diagrams. Our eventual preference was for an intersecting 
sets representation (Fig.1), which captured our belief that there are elements in common and there 
are elements that are distinct, rather than one being completely a subset of the other, or the two 
either being completely unrelated, or fully overlapping.   
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Figure 1: Perceived relationship between CT and MT.  

 
The question of how to introduce the idea of CT to children and young adults within 

mathematics education without an agreed-upon definition in the field was another recurrent theme 
in our discussions. As an anchor to our discussion, we used Noss and Hoyles’ framework, presented 
at the 2015 symposium, which defined CT as involving Pattern Recognition, Decomposition, 
Abstraction, and Algorithm Design. Pattern recognition is seeing the data of the problem and 
understanding the data and variables; decomposition is looking at a problem, really understanding 
it, breaking it down into pieces, analysing its’ relationship with previously encountered models and 
patterns. Also included the ability to recognize a problem by its type in order to identify parts that 
can be re-used or remixed. We felt that what separates CT from other forms of mathematical 
problem solving is extracting/abstracting the answer to the problem into other domains, and to 
apply the solution to other cases. We also noted that CT is a process that you follow to solve a 
problem. Namukasa, Minakshi & Miller (2017) suggest this close relationship with the metaphor of 
problem solving as used in mathematics education:   

  
The metaphor of CT as extending over the problem-solving process, which is also present in 
Wing’s (2006, 2011) definition of CT, resonates with our interest in integrating CT in school 
curricular. For Kalelioglu, Gülbahar and Kukul (2016) CT is about the whole process of 
problem solving including: identifying a problem (through abstraction, decomposition, levels 
thinking etc.), working with information and data needed (data practices, pattern 
recognition, conceptualizing etc.), planning solutions (logic, algorithms, procedures, 
parallelization), implementing solutions (automation, modelling, simulation) and assessing 
solutions (testing, debugging, generalization) for further improvement. Other metaphors 
such as designing computational projects, expression through a variety of computational 
media, computational model building are also applicable to CT. 
 
There was a suggested link to Polya’s (1945) problem-solving model with CT, using 

the metaphor of problem solving: (1) identify problem through decomposition and 
abstraction (Polya’s Understanding phase), (2) working with information and data needed 
(through data practices, pattern recognition, conceptualizing), (3) planning solutions 
through logic (algorithms), (4) implementation (through automation, modeling, simulation), 
and (5) assessing the solution (through testing, debugging, for further improvement). Tedre 
and Denning (2016) note that historically (1970), Feurzig, Papert and colleagues had 
explicitly argued that, “programming was a great tool for concretizing Polya’s classic text 

  

CT MT 
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How to Solve It on problem solving in mathematics” (p.122), and that amongst his group, 
there was an evolution from “mathematical rigorous thinking, to procedural thinking, and 
computational thinking” (p.122). This reinforces the need for those of us in the field of 
mathematics education, who look to integrate math and CT, to become familiar with the 
history and trajectory of the disciplinary fields.      

 
Recommendations: Diverse intersectional groups, such as ours, who work at the nexus of 
mathematics education, computational sciences, teacher education, and PreK-16 
curriculum, need to have a greater awareness of the history of the fields and the diverse 
cultures, concepts, and individuals that have contributed to and helped to formulate these 
fields. This does not resolve the definitional problem of what CT or MT are in a rigid 
ontological sense but allows us to make sense of the diversity in a, hopefully, more 
productive way. We noted that consequently, there is a need, perhaps even an ethical 
requirement, for those of us doing work with diverse publics and in knowledge mobilization 
efforts, to be more precise with our language, and reserved with our claims in our research 
reports and in public communications about CT. We do need to take care and time to 
explicitly identify the specific aspect(s) of CT that we are addressing, so that the part or 
aspect of CT is not mistaken for the whole. We do not want to create the conditions for 
misconceptions or myths to arise; such as the notion that CT equals programming or coding, 
or that CT skills have far-reaching transfer - both of which are not supported in the research 
literature (Tedre & Denning, 2016).   
 

DISCUSSION: CT AS A VALUE-DRIVEN PROCESS 
 
Foregrounding the socio-cultural dimension, we presented earlier, we have come to believe 
that it is important for us as researchers, teachers, and educators to think of CT, and 
explicitly name it as a value-driven habit of human-beings. We are not aware at this kind of 
research on CT in non-human animals or other species at this time that might refute this 
claim. We do acknowledge evidence for computational principles in life processes (Flake, 
1998; Pavlus, 2016) but draw the line for now at the ‘thinking’ aspect. That is, we see CT as 
an enculturated set of human practices to see, hear, encounter, and ultimately read and 
write the world, in a Freirian sense, in particular ways that are valued/rewarded in specific 
computational cultures. Our challenge, similar to the problem of definitional consensus, was 
agreeing on what those particular ways might be for us, whose work intersects with 
education. In focusing on what values drive CT habits of mind and forms of practice, we note 
that this dimension has both context-dependent features and subjective features. The ideas 
of Abstraction and Automation, we believe, lie at the intersection of the two sets above, i.e. 
it is part of the value system of both the Mathematical Sciences and the Computational 
Sciences, and core to both MT and CT. 
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We saw these two principles or processes as intimately related in the following way: 
abstraction enables and makes possible automation (often through pattern recognition and 
cross-connection processes). In the specific context of various computational sciences and 
cultures this is frequently through the design of algorithms. In our discussion, we suggested 
that what separates CT from other more traditional problem solving is this explicit value and 
intention to extract/abstract those elements of an answer to a specific bounded problem, to 
transfer those aspect that are amenable to implementation via algorithm and to apply the 
solution to other cases. It may also bring to bear specific tools and concepts from the 
computational sciences to a more traditional mathematically posed problem, for example, 
the case of the solution of the Kadison-Singer problem (see Klarreich, 2015). We tentatively 
framed this using Hewitt’s (1999) distinctions between necessary and arbitrary aspects, 
though here in relation to elements of the problem that could be algorithmised (necessary), 
and the elements of the problem that were specific and substitutable (arbitrary). We used 
the example of the owl problem (see Section on Examples) to illustrate this. We note as well 
that among Gadanidis’ (2017) set of five affordances of CT for elementary mathematics 
education, Abstraction and Automation are included. The other three values-drivers - 
agency, access and audience (Gadanidis, 2017) - we believe, are emergent from and situated 
within educational and school contexts through of relevance to other computational 
cultures more broadly. A route for further discussion in the future is the implications of this 
abstraction and automation for our local and global computational cultures. This was 
outside the scope of the working group focus.     

 
In pursuing these ideas after the symposium working group, we have come across an 

online essay by Martinho-Truswell (2018), in which he proposes the criterion of automation 
as a defining human characteristic, with our tools and sequenced connections of tools (a 
‘machine’ in the Deleuzian sense of a set of connections, not a set of parts) increasingly 
allowing the offloading of physical labour, and in some societies - cognitive labour. This 
corresponds well with views of embodied cognition and enactivist thought in mathematics 
education. This “cognitive automation”, Martinho-Truswell suggests, is the result of the 
need to overcome the limitations of working as well as long-term memory, especially in 
situations of increasing socio-economic complexity, where ‘trust’ is essential. The invention 
of the Jacquard loom in the 19th century, he suggests, recombined cognitive and physical 
automation in ways that threads their way into our modern digital devices. All of our 
computational activities, he offers, are in the service of human goals, even if they are but 
“layers of human instructions committed to external memory being carried out by machines 
that can read it” (online, n.p.). 

 
Although Martinho-Truswell describes the drive as exporting effortful tasks, it is 

perhaps better to say that tasks, which are automated through CT and other human habits 
of mind, are those that are effortful (physically, cognitively or both), dangerous, humanly 
impossible, or perceived as joyless (repetitive), but at the same time, confer some 
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competitive advantage (often economic) to individuals or organizations. This view of 
humans as apes-who-automate, allowing us “to supplement our bodies and brains with 
layer upon layer of external assistance [giving]...a depth, breadth and permanence of mental 
and physical capability that no other animal approaches” (online, n.p.) is perhaps another 
way to explain what CT is, how it fits with who we are as a species, and why it is aligned with 
curriculum.     
 

RECOMMENDATIONS 
 In future discussion, we may wish to attend in a focused way to the broader social, 

ethical, and curricular implications of abstraction and automation, as well as other values 
that integrating CT with school curriculum have to offer.   
 
Exploration: Examples and non-examples of CT 
 Alongside the discussions presented above we brought in several examples over the 
two days to help us try to make sense of what CT is and what values drive CT habits and 
practices. In the report, we have collected the examples (including CT in problem solving 
contexts as well as in non-programming and programming contexts) here in one section 
with notes on the discussion related to each. We were also considering how the tasks would 
relate to curriculum PreK-16 and in teacher education. We looked for interesting examples 
from our own experience that would allow us to bring the distinctions between 
mathematical thinking and computational thinking to the foreground so that it might be 
clearer to us. We pondered ‘What would be considered mathematics thinking and tools in a 
task as opposed to computation thinking and tools in these examples?’ We also sought to 
identify and name certain periods of our thinking as mathematical or computational.  
 
The Owl Problem 

The two problems below appeared in the Global Math Challenge (website), an online 
math competition, in 2016 and are related tasks involving spatial reasoning. We considered 
how we might find and adapt tasks such as these to bring out some ideas in CT through 
changing the focus of our traditional questioning. We did note that solving the initial task 
does require spatial reasoning skills and that attempting to formulate that thinking 
algorithmically is a challenge - but this is the area of productive struggling and 
computational challenge. 
 
Traditional Question requiring Mathematical/Spatial Thinking: Some owls are sitting on 
some blocks. The picture shows the front and back view of the same set of blocks. How 
many owls are there? Explain how you solved the problem using models, pictures, and/or 
words. 
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Figure 2: Owl Problem primary grades. 
 
Questions to draw out CT processes: Write an explicit algorithm to solve problems like this 
based on your solution strategy Is your thinking different when you are writing the 
algorithm from when you were solving the problem? If so how? Test your algorithm on the 
following problem and make any changes. Give your algorithm to another person/group. 
Use the algorithm you have received EXACTLY as it is written/presented/defined. Do you get 
the same answer? If not is there something you learned? What is similar about the different 
algorithms and what is different? Create a different but similar problem to try to ‘break’ 
each other’s algorithms, i.e. can you create a set-up or find ways of conditions where the 
algorithm won’t be successful? Revise your own algorithm based on your thinking and 
finding. Give it so someone else to test. [We note as well that these problems could be 
‘gamified’ so that a larger example space is explored before the questions are posed.]     

 

Figure 3: Owl Problem Junior Grades 

In the Owl Problem, we saw the owls and their locations as arbitrary. Necessary 
aspects include the realization that the view of owls could be blocked depending on the 
position of the viewer and where other blocks are placed. We also noted that we have 
assumed that the blocks are solid, rather than just a folded surface and that there always 
exist blocks under those blocks that create a second level. In discussing algorithmic design to 
solve problems of this type, the abstraction of the relevant idea is that creating an accurate 
‘top view’ of the system always allows us to count the number of owls directly even if they 
are behind other blocks. This strategy or algorithm generalizes to all problems of the type, 
“looking from the top-down can let us see what is behind obstacles in other views.” The 
sequence of questions and the task also allows learners to question their assumptions and 
try to iteratively improve their solution so that it might work in a greater number of 
situations e.g. if some of our assumptions are not true. It also engages a ‘hacker’ mindset - 
to understand a system as deeply as possible.     
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The task also provided us an opportunity to analyze our thinking and whether we 
could identify when we were thinking mathematically and when we were thinking 
computationally. We did note that individually our thinking is influenced by our past 
experiences and for most of us in the working group this has been mostly mathematical 
rather than computational. However, we wondered what if we analysed our experiences 
explicitly to look for CT ideas? What would we see? We note that it is a challenge to think 
about and look back on the thinking while working on tasks and to attend to where our 
awareness is and what it is attending to. We think this is an area for additional exploration.  
 
Coding in a Geometric Environment (Web Sketchpad) 

http://www.sfu.ca/geometry4yl/websketchpad.html.  

In addition to using alphanumeric language, there are also "spatial programming” 
languages in which the input and output are both geometric (using geometric primitives 
such as circles, segments, and points). Sinclair and Patterson (2018) have shown how 
dynamic geometry environment (DGE) such as Sketchpad can function as spatial 
programming languages that also support mathematics learning.  

For example, construction tasks in a DGE can be seen as involving programming. 
Points, segments and circles can be used to construct an equilateral triangle (Fig.4). The 
construction sequence functions as a procedure, which can be tested by dragging the 
independent objects in the sketch and checking whether the triangle remains equilateral. If 
the triangle falls apart or changes its properties, debugging (to correct a procedure) can be 
used to change the construction. This task could be extended to creating a regular hexagon 
(Fig. 5), in which case the same procedure needs to be repeated six times (to iterate a 
procedure). 
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    Figure 4: Equilateral triangle in Sketchpad    Figure 5: Regular hexagon in 
Sketchpad 

How many solutions?  
This problem is attributed to an April 2017 tweet by Graham Fletcher  

  

Figure 6: Open Middle problem 
(https://twitter.com/gfletchy/status/852494584538181634) 

Although we did not engage with this significantly during the symposium working 
group the problem provides a good opportunity to compare mathematical and 
computational approaches and perhaps mathematical and computational thinking. The first 
mathematical approach is to try something and look for patterns and then generalize ideas 
like interchanging units digits or tens digits on one side of the equation to generate 
additional solutions. Steven had also posed the problem to Cameron Morland who is in 
computer science at University of Waterloo during CMESG 2017. He sent two python 
programs that arrive at the solutions differently - one using a dictionary: 
https://drive.google.com/file/d/1T2i24cjQjLawtfsiZyeo27QXoITcjeAB/view?usp=sharing 
 and one using permutations: 
 https://drive.google.com/file/d/17DXC3GO0-MwS7O8r_k-
Be0Xgsk3SdXnD/view?usp=sharing. 

The first solution, using a dictionary, calculates all of the sums of each pair of 
number from 10 to 99 inclusive (e.g. 10 + 11 = 21, 10+12 = 22, etc.). It then goes through all 
of the sums and checks every two pairs of numbers to ensure that every digit is unique from 
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1-9, and that there are no zeros in any numbers. 
The second solution calculates all the different permutations from the digits 1 

through 9, then takes the first eight digits of each permutation and checks if the sum of the 
first two pairs of digits equals the second two pairs of digits, that each digit is unique from 
the range of 1-9 inclusive, and that there are no zeros in any number. 

Both solutions presented would generally be considered ‘brute force’ approaches. 
They take advantage of the fact that a computer can perform these calculations very quickly 
and do not attempt to use any domain knowledge to reduce the search space. The 
interesting part about these solutions is that they do not require any mathematical insight 
on the structure of the problem itself. This is not to say that these solutions do not require 
any mathematical thinking - understanding the problem and its search space requires 
mathematical knowledge especially with regards to bases, while programming the solution 
requires knowledge of permutations and modulus. However, this still demonstrates how a 
CT approach can work on a problem. 

We do think that some problems that teachers might be utilizing for other 
mathematical purposes could be good test cases for elaborating and exploring the 
distinctions and affordances of computational thinking.   
 
Olympiads in Informatics 
 

Within mathematics education, competitions form a powerful sub-culture. There 
exist similar sub-cultures for computational thinking and computational practices. In both 
cases, there are often an explicit intent to identify ‘talent’ and we wondered about the 
values driving the different competition cultures. We used the problem below to question 
whether it could be used to identify students who have a propensity for CT or coding and to 
discuss the following belief: that it is possible to be good at CT and not be a good coder but 
that the reverse is not likely, given that coding provides a strong environment for 
developing CT proficiency. 
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Figure 7: Olympiads in Informatics http://www.amt.edu.au/pdf/AICsolutionssampleset2.pdf 
 

We wondered if it was possible to solve this problem using mathematical thinking or 
using CT. How this could be CT? An example is given (the triangle), in order to solve this and 
if you have no experience with programming and robots you have to be able to understand 
the pattern of how those instructions cause the robot to make those patterns in the first 
place. If you can’t understand the pattern then you have no hope of solving the problem. 
Thus, the solver must abstract the solution to the problem. We felt that this type of problem 
might be a diagnostic type task for certain types of computational thinking. We moved on to 
considering if these are useful problems for school curriculum. We also felt this problem 
might be good as an exit task or a check for understanding.  
 
A learning trajectories approach 

Learning trajectories have been receiving a lot of attention in the literature on 
teaching mathematics in the early years and we wondered if this lens might be of benefit in 
curriculum considerations. According to Clements and Sarama (2010), “learning trajectories 
have three parts: a) a mathematical goal; b) a developmental path along which children 
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develop to reach that goal; and c) a set of instructional activities, or tasks, matched to each 
of the levels of thinking in that path that help children develop higher levels of thinking” 
(online). With this in mind, we asked, ‘What knowledge and resources do teachers need to 
have in their practice?’ We noted that many were doing good things with coding. We felt 
that to achieve proficiency with any type of thinking one is required to practice with well 
thought out sequences of variation (see the example sample Space) that would allow them 
to develop the necessary skill in abstraction. We noted that in many observations we were 
seeing the rich experience and the hard fun, but were wondering if the necessary variation 
in experiences for the abstraction aspect was being provided, not only in our practice but in 
teachers’ classrooms?  

We shared Carly Rozin’s (2016) work that she had presented at Fields around what 
makes for a good CT task. Rozin (2016) believes a good CT task has the following 
components: 

They are modular (can be broken into components / smaller pieces).  
Solving smaller pieces allows you to solve the original question. 
Understanding of the components leads to a deeper understanding. 
The deeper understanding allows you to build on the original solution or answer more 
complicated questions.  

In Figure 8 below we juxtaposed the mathematical task of determining the number of paths 
on an nxn square grid from one corner to the one diagonally opposite where moves are only 
permitted downwards or to the right (far-right) with a coin flipping task coded in Scratch 
(middle) and the problem of navigating in Cubetto’s world with physical coding blocks. We 
note that teachers (and learners) in Pre-K, early primary and Junior-Intermediate may 
encounter each problem as a discrete case without appreciating how they might be 
connected.         
 

 
Cubetto’s World  Coin Flip problem in Scratch    How many paths? 
 
Figure 8: Three related problems at developmentally diverse ages? 
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RECOMMENDATIONS 

 We need additional examples and a clear hypothetical learning trajectory for how examples 
could be sequenced developmentally. There also needs to make clearer connections to 
curricula and clarity about what aspect of CT is being assessed and how it is being assessed. 
This relates back to our first recommendation regarding being clear and explicit about which 
aspect of CT we are focusing on in a given task so that it might be clear to teachers and 
students. We would like to see more explicit examples and guidance for teachers and 
curriculum developers where a well-known mathematical activity or task is used to bring out 
or develop specific elements of CT ideas and practices.  
 
RECONCEPTUALIZING CT FOR THE CANADIAN CLASSROOM: INTERDISCIPLINARY LEARNING  
 

In exploring a working definition, we also looked at efforts to integrate CT tasks in 
Canadian curriculum. Despite the high levels of interest in developing CT skills among 21st-
century children, there have been challenges to address and identify the main 
characteristics of CT. Likewise, we heard that teachers who are integrating CT in teaching in 
different jurisdictions were unclear on ways how to integrate CT in the mathematics 
curriculum. 

Wing’s (2011) definition has provided two valuable viewpoints about CT. Firstly, CT is 
presented as a thought process, which makes it independent of technology, and secondly, 
CT is an explicit type of problem solving, which involves diverse abilities, such as being able 
to design solutions that can be performed by a computer, human, or by both. Our 
representation of the  relationship between CT and MT is best represented by Venn 
Diagram for intersecting sets, with the ideas of abstraction and automation lying at the 
overlapping sections of the two, meaning that they are integral to both MT and CT. 
Gadanidis (2017) points out that the trend of adding some form of computer coding to 
curriculum is an international phenomenon, citing Kotsopoulos et al. (2017), who emphasize 
that England, Finland, Estonia, and USA have all mandated CT curriculum. He also highlights 
the benefits of integrating CT and mathematics in school: 

 
At the heart of computational thinking – and mathematics – is abstraction. When 
children write code, they come to (1) understand in a tangible way the abstractions 
that lie at the heart of mathematics, (2) dynamically model mathematics concepts 
and relationships, and (3) gain confidence in their own ability and agency as 
mathematics learners” (p.1). 
 
It is our belief that CT is distinctly embedded in mathematics teaching and learning, 

and should be taught within - rather than alongside - mathematics curriculum. However, in 
order to achieve effective interdisciplinary integration, there should be a focus on 
curriculum reconceptualisation. 
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In 2017, Global News Network issued a detailed report on how coding is taught in 

Canadian schools, and summed it up as follows: Nova Scotia, New Brunswick, and British 
Columbia all made coding mandatory, with Ontario and Saskatchewan having it as an 
optional part of the curriculum, while Alberta, and Manitoba are looking at their options and 
“studying the approach taken in other provinces.” 

 
In BC’s new curriculum, which was officially introduced in September 2016 in all K-9 

classrooms, a subject of Applied Design, Skills, and Technologies has been added (BC 
Ministry of Education, 2017). Similarly, as of 2016, Nova Scotia has started Information and 
Communication Technology and Coding curriculum integration in both primary and 
intermediate grades. What is remarkable about the way the Applied Designs, Skills, and 
Technologies curriculum is introduced in BC- and a shift away from the previous 
autonomous model - is that there is an expectation for K-5 levels that the content will be 
taught “in combination with grade-level content from other areas of learning in cross-
curricular activities to develop foundational mindsets and skills in design thinking and 
making.” Middle school grades from 6 to 8 have an explicit Computational Thinking module 
outlined in the Learning Standards section. Students in grade 6 and 7 are expected to know 
simple algorithms that reflect computational thinking, visual representations of problems 
and data, evolution of programming languages, and visual programming - all taught in 
conjunction with curricular competencies of Applied Design, Defining, Ideating, Prototyping, 
Testing, Making, Sharing, and Applied Skills. In grade 8, more content is added and students 
are expected to know the following: 

 
• software programs as specific and sequential instructions with algorithms that can 
be reliably repeated by others 
• debugging algorithms and programs by breaking problems down into a series of 
sub-problems 
• binary number system (1s and 0s) to represent data 
• programming languages, including visual programming (Scratch, Alice, Greenfoot, 
BlueJ), in relation to text-based programming (HTML) and programming modular 
components (Arduino, LEGO, Mindstorms) 
 
The five-year International Baccalaureate Middle Years Program (Interdisciplinary 

MYP Guide, IBO, 2014), designed for grades 6-10, outlines interdisciplinary integration as 
one of its requirements. Interdisciplinary learning, which is described as a process by which 
students integrate two or more disciplines to create new understanding, has three main 
characteristics: it’s purposeful (not a goal in itself), grounded in disciplines (reorganizes 
disciplinary objectives in meaningful ways), and integrative (elements of one or more 
disciplines are placed in productive relationships with one another). These characteristics 
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align with our philosophy of curriculum reconceptualisation, and could be used as a guide to 
help successfully integrate CT and Mathematics curricula.  
 
 Mueller (et al, 2017) examine Ontario elementary curricula for CT concepts and skills 
using frequency and content analysis based on 38 keywords (eg. Algorithm. Data, Recursive, 
Simulate). They do not find the specific term in any curriculum document but note “an 
emphasis on CT-related concepts and perspectives in seemingly unrelated disciplines of 
language and the arts…” (p.265) in addition to alignment with mathematics and science 
curriculum through problem-solving. They note that specific terms related to computer 
programming cannot be found and suggest that, while concepts and perspectives 
foundational to CT are evident, the actual practices involved in CT are not named.     

The existence of foundational concepts and perspectives of CT aligns with Tartar et 
al.’s (2017) findings in their study of co-developing integrated computational thinking tasks 
in Grades 6-12 with teachers. They note that, “the result of student classroom observations, 
interviews with teachers, and participatory engagement rarely led to activities that fit the 
prototype of CT if CT means using elements easily recognizable to computer scientists as 
computer science…” (p.65). Instead they found what they have labeled proto-computational 
thinking (PCT) which,  

consists of aspects of thought that may not put all the elements of CT together in a  
way that clearly distinguishes them from other human intellectual activity. PCT  
activities may draw out the use of a representation, stimulate thought about the  
utility of different representations, partially instantiate abstractions, or increase 
focus on a systems’ level analysis. They might emphasize systematicity in problem 
solving but not emphasize problem solving in ways that are enactable on a 
computer” (pp. 65-66).  

 
Returning to our socio-political framing of CT as a value-driven process, they go on to argue 
that, “PCT is not in competition with CT. But it is also not just a primitive kind of CT. It is a 
cultural phenomenon. The definition of CT, the goals of ICT, and the acknowledgment or 
failure to acknowledge the importance of PCT are political as well as epistemological acts 
and hence important because our well-meant interventions in the area of CT may reinforce 
existing social inequities” (p. 79).  They found that in their study they were more successful 
at promoting PCT by promoting systematicity and a need for a systematic approach. This is 
an important point for our consideration - perhaps what we are doing at the elementary 
level is better termed developing foundational aspects of CT or proto-computational 
thinking (PCT)? Rather than trying to shoehorn a concept that is not well-fitted to curricula, 
and is not integrated, and which professionals in the computational disciplines might 
understand differently. This slight shift may open the conversation up in productive ways for 
researchers and teachers and curriculum designers.  

RECOMMENDATIONS  
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The ongoing challenge to integration seems to be in those situations where CT is 
trying to be ‘fit’ into curricula as yet another ‘add-on’. We see this approach as having 
limited viability over time. We acknowledge that teachers both pre-service and in-service 
require support from academic institutions, their local bodies and ministry offices. We 
believe the best chance for long term success is for CT to be integrated but that this requires 
a reconceptualization or at least a re-examination of the role and nature of curriculum 
documents, expectations and resources. We find the concept of Proto-Computational 
Thinking (PCT) very promising and view it as a more realistic and achievable systemic goal 
for naming what we do at the earliest grade levels. This keeps CT intellectually honest and 
respectful of the multiple responsibilities around competencies that teachers are already 
charged with developing as well as acknowledges the polysemy and ambitious challenge of 
integrating CT across the PreK-16 landscape.     
 

CONCLUSION 
 

Computational Thinking can be integrated but this requires a careful 
reconceptualization of curriculum. The current approach of bringing it into curriculum via 
mathematics is promising but additional examples and a developmental framework 
including tasks such as that of learning trajectories may be useful. Adapting existing 
mathematical tasks to explicitly draw attention and bring out computational ideas from a 
variety of sources is one avenue for additional exploration. The roles of abstraction and 
automation, and the implications of these need greater attention. We are unlikely to resolve 
the ontological question of what CT is in a way that is satisfactory to all the communities 
who use and have contributed to the term. However, we in educational research should be 
explicit, and perhaps more circumscribed in our communications to clearly name which 
aspect(s) of CT we are focusing on. There may also be some value in considering the concept 
of PCT for the early grades as a more accurate descriptor of what we hope to accomplish.    
We note that certain teachers are innovating in the ways they are integrating coding in their 
teaching of school curricula and so are really doing good things with coding, but we also 
want them to get really good at the thinking which requires repeated practice with well 
thought-out task sequences that vary in ways that allow teachers and students to engage in 
the thinking opportunities evoked by the tasks as well as in making some abstractions from 
the tasks. In many ways, this is analogous to what goes on for learners in constructionist 
environments such as Scratch, though there is a sense of a gap for those working towards 
developing CT within current curriculum and preparation structures. We noted that when 
you begin to learn computer science, you learn the tools - loops, data structures, variables, 
etc. and how they fit together. Eventually, the tools are combined to create something 
which involves problem solving. Abstraction comes from using the tools to create larger and 
more sophisticated programs. Creativity and expression come when you learn to use the 
small pieces and tools to read and write the world.   
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