Geometric Coding Environment: Integration of Computational Thinking and Mathematics in Primary School

Nathalie Sinclair and Victoria Guyevskey
Simon Fraser University

INTRODUCTION

While geometry has been an academic subject since Plato introduced his Quadrivium of Mathematical Sciences at the Athenian Academy in 387 B.C.E. (Campbell, 2004), the idea of computational thinking (CT) as a curriculum focus did not emerge until very recently, even though it is not brand new: in 1980, Seymour Papert (1980) used the term for the Logo programming language, which he argued could help improve the way children think and solve problems. More recently, CT is seen as a set of cognitive skills and problem-solving processes that Wing (2006) envisioned as part of every child’s education. In the new BC curriculum, a CT module has been added for all middle grades. Gadarianis (2017) notes that “the trend of adding some form of computer coding to curriculum is an international phenomenon” (p.1). Kotsopoulos et al. (2017) emphasize that England, Finland, Estonia, and USA have all mandated CT curriculum. Our approach was to use dynamic geometry as our programming language, as a way to better promote students’ geometric thinking and communicating (Sinclair, in press).

METHODOLOGY AND RESEARCH QUESTIONS

This research project was carried out in an urban elementary school in British Columbia. We aimed to design tasks that would combine CT and geometry. We wanted to see (1) what the students would learn, and (2) what the effect of combining domains would be on how the concepts emerge.

We conducted a two-month classroom intervention with grade 2/3 students.

One of the tasks was to create their own design and copy them using pencil and paper. Students had more difficulty drawing the designs than actually making them:

During the third session, a special web sketch that contained only three tools – segment, circle, point - was introduced, and students were encouraged to combine them with the computer tool Drag to get to a point. Students could not solve a key problem in the environment, which is a virtual representation of a distance, a length, and a radius. Students were able to see the congruent segments, but could not find the way to find the distance.

In the fourth session, students were exploring properties of a circle step-by-step. A circle with two radii was constructed on the Smartboard, and two main questions were posed: are these two radii of the same length? How many more radii can we fit into one circle? At first, students thought the right radius was longer than the left one, but after a quick demonstration that it can move and approach the other radius, the students came to the consensus that they were the same length. The question then became, is it the potential number of radii caused hesitation, so students were invited to participate in a role play, where everyone was a point on a circumference, and at the exact same distance from one of the students who embodied the centre of the circle. As the circle became tight and another person tried to join in, one of the students protested: “There is no more space left!” The researchers suggested to make the circle bigger by stepping back, which seems to have caused a shift in understanding, and to the question “how many radii can fit in a circle”, students answered: “ten”, “twenty”, “a bunch”, with someone adding: “it will take us three hundred years to find them all”.

To see whether the students could apply their new understanding of the radii being the same length, we asked the children to use Sketchpad together with two equilateral triangles. Many lessons were found this task challenging. Centres were off and everything was moving around. This was the second opportunity to make a procedure.

Students then were asked to create a stickman on their iPads that could grow larger or smaller. Task proved to be difficult for the same reasons as before – the construction was not very dynamic and students had to stay together, so many adjustments had to be made to the design, meaning the procedure had to be corrected. This task was very rich in its potential to build fluency in such CT processes as abstraction, algorithmic thinking, decomposition, and debugging: before students could build a stickman, they had to create an algorithm to build two segments of equal length, iterate it to build arms, legs, and fingers, combine parts into a whole by step by step, perform a dragging test, and debug if the design fell apart.

The interviews portion related to the circle tool, featured the following questions: (1) Which of these line segments are the same length? How do you know? (Fig. 1); (2) Does this triangle have any equal perpendicularly? How do you know? (Fig. 2); (3) Does the circle tool let you do? Can you use it to make this? (Fig. 3); (4) Can you make two segments of the same size, without measuring them? (Fig. 4).

The interviews portion related to the circle tool, featured the following questions: (1) Which of these line segments are the same length? How do you know? (Fig. 1); (2) Does this triangle have any equal perpendicularly? How do you know? (Fig. 2); (3) Does the circle tool let you do? Can you use it to make this? (Fig. 3); (4) Can you make two segments of the same size, without measuring them? (Fig. 4).

DISCUSSION

Each geometric task that we presented to students was both geometrically and CT-rich. In addition to exploring geometric shapes, it required abstraction, automation, and analysis, using visualization and terminology introduced by Papert (1980). In the series of warm-up tasks, students were offered a particular design for a triangle, which was square filled with triangles, and then they had to extrapolate from that design an abstract procedure of how to fill any shape with any number of triangles. Then, in automation phase, students were creating an algorithm that would help solve any problem of the same type (e.g. drag triangles into the confinement of a shape, then adjust the size of the triangles by dragging vertices until the shape gets filled). Finally, in analysis phase, students were testing out their solution and debugging if necessary (e.g. realizing that there is no space left to fit the last triangle, and either re-doing the design, or shrinking it almost into a line to create an illusion of fitness). Using the Computational Thinking Pedagogical Framework proposed by Kotsopoulos et al. (2017), our two warm-up lessons featured tinkering and making as students were exploring dynamic triangle, and the remaining lessons involved making, remixing, and debugging, when constructing congruent shapes with a circle tool, and making more complex designs. Our finding is that in addition to supporting the teaching of geometry, the DGE-based tasks effectively support teaching of many CT concepts, which seems to provide sufficient ground for Math/CT interdisciplinary integration.

REFERENCES

Sinclair, N., & Moss, J. (2012). The more it changes, the more it becomes the same: The development of the routine of shape identification in dynamic geometric environments. International Journal of Educational Research 51:28-44.

CONTACT

Victoria Guyevskey
Simon Fraser University
Victoria_Guyevskey@sfu.ca
+1 (778) 782-3395
www.sfu.ca/education.html